
El matemático japonés Masaki Kashiwara, conocido como el “arquitecto invisible” que conecta distintos campos de las matemáticas, fue galardonado con el Premio Abel 2025, el más prestigioso en el mundo de las matemáticas.
Con 78 años, Kashiwara recibió este reconocimiento por sus contribuciones fundamentales al análisis algebraico y la teoría de la representación, particularmente por el desarrollo de la teoría de los D-módulos y su descubrimiento de las bases cristalinas.
Este premio, considerado el equivalente al Nobel en el ámbito matemático, subraya la importancia de su trabajo, que tuvo un impacto profundo en diversas áreas, desde la física hasta la teoría de nudos, e inspiró a generaciones de matemáticos.
Kashiwara, que comenzó su carrera con una fascinación por el álgebra a temprana edad, tuvo puentes entre diferentes mundos matemáticos, creando un lenguaje común que permite a las distintas ramas de las matemáticas interconectarse.
El primer encuentro con las matemáticas
Desde su infancia, Masaki Kashiwara sintió una gran curiosidad por los desafíos matemáticos. Uno de los recuerdos más tempranos que tendría un gran impacto en su carrera fue la resolución de un problema escolar japonés llamado Tsurukamezan.
En este problema, un número desconocido de grullas y tortugas se encuentran en una caja, y la tarea consiste en deducir cuántas de cada tipo hay, partiendo de la cantidad total de cabezas y patas. Este enigma despertó en él una pasión no solo por resolver problemas específicos, sino por encontrar métodos generales que pudieran aplicarse a cualquier caso.

Este interés por los métodos universales acompañaría a Kashiwara a lo largo de toda su carrera, llevando sus investigaciones a campos tan avanzados como el análisis algebraico y la teoría de D-módulos.
Durante sus estudios en la Universidad de Tokio, tuvo la suerte de contar con la guía del matemático Mikio Sato, una figura clave que revolucionó las matemáticas al aplicar el álgebra al análisis, creando una nueva disciplina conocida como análisis algebraico. Bajo su tutela, Kashiwara desarrolló su tesis de maestría a los 23 años, la cual sentó las bases de lo que más tarde sería la teoría de los D-módulos.
Conexión de disciplinas
El matemático Kashiwara se destacó por su capacidad para entrelazar áreas aparentemente inconexas dentro del ámbito matemático. Entre sus más relevantes aportaciones se encuentra la Correspondencia de Riemann-Hilbert, una adaptación del problema clásico formulado por David Hilbert, que logró sincronizar conceptos de análisis y topología.
Este enfoque innovador no solo ayudó a desentrañar problemas complejos en la teoría de ecuaciones diferenciales lineales, sino que también amplió notablemente las aplicaciones de estos conceptos a nuevos contextos.

Durante su carrera, Kashiwara estableció una sólida y exitosa colaboración con el matemático francés Pierre Schapira. Juntos, desarrollaron la teoría microlocal de haces, que brinda una herramienta formidable para conectar ecuaciones diferenciales con complejas estructuras geométricas.
Su esfuerzo conjunto culminó en la escritura del libro “Sheaves on Manifolds”, una obra que el japonés consideraba una de sus más importantes contribuciones al campo de las matemáticas.
La teoría de las bases cristalinas
Uno de los logros más notables de Kashiwara ocurrió en 1990, cuando desarrolló la teoría de las bases cristalinas dentro del contexto de los grupos cuánticos.
Esta teoría permite representar simetrías complejas mediante grafos, una innovación que abrió nuevas vías para resolver problemas tanto en la teoría de la representación como en la geometría y la física matemática. Su método de demostración, conocido como el argumento del gran bucle, se consideró uno de los más complejos y elegantes de las últimas décadas.
Aunque su obra puede resultar abstracta y compleja para quienes no están familiarizados con las matemáticas avanzadas, su impacto es innegable.
Kashiwara logró lo que pocos matemáticos pueden: crear un lenguaje común que permita a las distintas ramas de las matemáticas dialogar entre sí, abriendo nuevas posibilidades de investigación e interconexión.
Un reconocimiento a su legado
A lo largo de su carrera, Kashiwara trabajó junto a más de 70 matemáticos y publicó una considerable cantidad de trabajos que dejaron huella en la comunidad científica. Además, su generosidad al compartir ideas permitió que otros desarrollaran y llevaran al público muchos de los conceptos que él introdujo.
Entre los logros que atesora se encuentran el Premio Chern (2018), el Premio Kyoto y la Orden del Tesoro Sagrado del Japón, que reconocen su influencia y contribución al campo de las matemáticas.
Kashiwara no solo dejó un legado de contribuciones matemáticas, sino que marcó el camino para las futuras generaciones de matemáticos, conectando geometría, álgebra y análisis de formas innovadoras.
Un avance podría cambiar la lucha contra una letal bacteria multirresistente que causa neumonía
Se trata del Staphylococcus aureus, uno de los patógenos más peligrosos para la salud pública, según la Organización Mundial de la Salud. Su resistencia a los antibióticos tradicionales dificulta su tratamiento, pero nuevos agentes terapéuticos podrían convertirse en la respuesta

Una nueva tecnología permite estudiar decenas de proteínas a la vez y permitirá diagnósticos más rápidos y precisos
Un método basado en IA desarrollado por el Instituto Weizmann de Ciencias puede aumentar exponencialmente la cantidad de esas moléculas obtenidas mediante imágenes detalladas en los tejidos

Los lagos pierden oxígeno y cientos de ecosistemas acuáticos están en peligro por el cambio climático
Con el aumento de las temperaturas y la intensificación de las olas de calor, científicos detectaron que espejos de agua en todo el mundo se están alterando. Cuáles son las consecuencias para la vida marina

Quién era Ichhutherium wayra, el nuevo mamífero fósil hallado en Argentina a más de 3.900 metros de altura
Paleontólogos del CONICET y universidades públicas del país dieron a conocer al animal que vivió hace 18 millones de años. Cómo era y qué implica el hallazgo realizado en Catamarca

Argentina volverá a estar representada en la competencia estudiantil de cohetes más importante del mundo
Lucas Freyre, estudiante de Ingeniería Mecánica del ITBA estuvo presente en Infobae en Vivo y contó cómo se prepara con su equipo para lanzar su proyecto y que alcance los 3000 metros de altura
