
Desde los primeros días de la pandemia de COVID-19, los científicos han buscado desentrañar los secretos de los mecanismos que permiten al coronavirus ingrese e infecte las células humanas sanas. Un equipo de investigadores de universidades de Estados Unidos descubrió el mecanismo por el cual unas moléculas que forman un residuo azucarado alrededor de los bordes de la proteína Espiga del coronavirus- actúan como puertas de entrada a la infección.
La proteína “Espiga” o “espícula” (“Spike” en inglés) del coronavirus ya entró en el vocabulario popular tras más de un año y medio de pandemia. El año pasado, a principios de la pandemia, Rommie Amaro, la investigadora en química biofísica computacional de la Universidad de California en San Diego, fue clave para aportar una visualización detallada de la proteína Espiga del coronavirus SARS-CoV-2 que se adhiere eficazmente a los receptores de las células humanas.
Ahora, Amaro y sus colegas de investigación de la Universidad de California en San Diego, la Universidad de Pittsburgh, la Universidad de Texas en Austin, la Universidad de Columbia y la Universidad de Wisconsin-Milwaukee, de los Estados Unidos han revelado cómo los glicanos, que son las moléculas situadas alrededor de los bordes de la proteína Espiga- actúan como puertas de entrada a la infección.

La investigación fue publicada el 19 de agosto en la revista Nature Chemistry. La doctora Amaro es coautora del trabajo junto con Lillian Chong de la Universidad de Pittsburgh. La primera autora es una estudiante de posgrado de la Universidad de California en San Diego, Terra Sztain. También participó la becaria posdoctoral Surl-Hee Ahn.
“Esencialmente, hemos descubierto cómo se abre realmente la Espiga y se infecta”, dijo Amaro. “Hemos revelado un importante secreto de la proteína espiga en su forma de infectar las células. Sin esta puerta, el virus queda básicamente incapacitado para la infección”.
La investigadora sostuvo que el descubrimiento de la puerta por parte del equipo de investigación abre posibles vías de nuevas terapias para contrarrestar la infección por el coronavirus. Si las puertas de las moléculas glicanos pudieran bloquearse farmacológicamente en la posición cerrada, se impediría efectivamente que el virus se abriera para entrar e infectarse.
El recubrimiento de glicanos de la proteína Espiga ayuda a engañar al sistema inmune humano, ya que se presenta como nada más que un residuo azucarado. Las tecnologías anteriores que obtenían imágenes de estas estructuras mostraban los glicanos en posiciones estáticas abiertas o cerradas, lo que inicialmente no despertó mucho interés entre los científicos.

Pero las simulaciones de supercomputación permitieron a los investigadores estadounidenses desarrollar películas dinámicas que revelaban las puertas de los glicanos activándose de una posición a otra. De esta manera, se aportó una pieza sin precedentes de la historia de la infección.
“Pudimos ver realmente la apertura y el cierre”, dijo Amaro. “Esa es una de las cosas más interesantes que ofrecen estas simulaciones: la posibilidad de ver películas muy detalladas. Cuando las ves, te das cuenta de que estás viendo algo que de otro modo habríamos ignorado. Si miras sólo la estructura cerrada, y luego miras la estructura abierta, no parece nada especial. Sólo porque capturamos la película de todo el proceso se ve realmente cómo funciona”, agregó.
“Las técnicas estándar habrían necesitado años para simular este proceso de apertura, pero con las herramientas de simulación avanzada de mi laboratorio, el “conjunto ponderado”, pudimos capturar el proceso en sólo 45 días”, dijo la doctora Chong.
Las simulaciones de alta intensidad computacional se ejecutaron primero en Comet, en el Centro de Supercomputación de San Diego, en la UC San Diego, y después en Longhorn, en el Centro de Computación Avanzada de Texas, en la UT Austin. Esta potencia de cálculo proporcionó a los investigadores vistas a nivel atómico del dominio de unión al receptor de la proteína de Espiga, o RBD, desde más de 300 perspectivas.

Las investigaciones revelaron que el glicano “N343” es el eje que hace que el receptor RBD de la proteína Espiga pase desde la posición “abajo” a la de “arriba” para permitir el acceso al receptor ACE2 de la célula huésped. Los investigadores describen la activación del glicano N343 como un mecanismo similar a una “palanca molecular”.
Además, Jason McLellan, profesor asociado de biociencias moleculares en la UT Austin, y su equipo crearon variantes de la proteína de la Espiga y probaron para ver cómo la falta de la puerta del glicano afectaba a la capacidad de apertura del receptor RBD. “Demostramos que sin esta puerta, el recepto RBD de la proteína Espiga no puede adoptar la conformación que necesita para infectar las células”, aclaró McLellan.
En el trabajo publicado en Nature Chemistry, los autores estudian mediante simulaciones el proceso por el cual que la proteína Espiga expone la porción de su estructura que interacciona con el receptor presente en las células del huésped, comentó a Infobae Karina Mariño, investigadora del Instituto de Biología y Medicina Experimental del Conicet. “Los autores encuentran que un glicano, llamado N343, es clave para activar ese proceso, y por lo tanto, esencial para la interacción con el receptor y entrada del virus. Los resultados presentados nos ayudan a comprender mejor el proceso de entrada a la célula del coronavirus, y en particular, la importancia de la glicosilación de la proteína Espiga. Este conocimiento, si bien aún en el área de investigación básica, es clave para seguir buscando maneras de impedir la invasión viral”.
Consultado por Infobae, Mariano Pérez Filgueira, investigador en virología del Conicet, y miembro de la Sociedad Argentina de Virología, comentó el hallazgo en los Estados Unidos. “La investigación publicada en Nature Chemistry aportó un blanco potencial para una potencial terapia: se podría interferir de alguna forma con el proceso de entrada del coronavirus en las células humanas”.
Para el investigador argentino, el descubrimiento podría ser aplicado al desarrollo de tratamientos con fármacos antivirales. “Los antivirales pueden actuar en diferentes etapas del mecanismo de entrada, replicacion y salida del virus. Con el nuevo conocimiento, se podría apuntar al desarrollo de un antiviral que interfiera en el paso del contacto de la proteína Spiga con el receptor celular”, afirmó Pérez Filgueira.

En junio pasado, el gobierno de los Estados Unidos había anunciado la inversión de 3.200 millones de dólares en el desarrollo de píldoras antivirales contra la enfermedad COVID-19. Anthony Fauci, director del Instituto Nacional de Alergias y Enfermedades Infecciosas y uno de los principales promotores del programa, dijo en junio que esperaba que los pacientes con coronavirus puedan ir a buscar sus pastillas antivirales a una farmacia apenas sepan que son positivos en el PCR o cuando comiencen a desarrollar síntomas compatibles con COVID-19.
“Me despierto por la mañana, no me encuentro muy bien, se me va el sentido del olfato y del gusto, me duele la garganta. Llamo a mi médico y le digo: ‘Tengo COVID y necesito una receta’”, detalló el doctor Fauci sobre cómo podría ser el uso de antivirales efectivos en el futuro contra el COVID-19.
SEGUIR LEYENDO:
Últimas Noticias
Del desierto africano al sofá: el sorprendente viaje de los gatos a lo largo de los siglos, según la ciencia
Un análisis internacional rastreó el linaje de los felinos domésticos desde el norte de África hasta las casas europeas. Qué se sabe ahora sobre su domesticación y su vínculo con los humanos, según el estudio que publicaron en revista Science

La NASA descubrió un aminoácido clave para la vida en una muestra del asteroide Bennu
La identificación de triptófano en fragmentos traídos a la Tierra, suma una pieza inesperada al mapa químico del Sistema Solar temprano y fortalece la idea de que los ingredientes de la vida surgieron fuera de nuestro planeta

El hallazgo de un diente fosilizado en la Patagonia confirmó la existencia de un mamífero antiguo que convivió con los dinosaurios
Investigadores del CONICET identificaron en Chubut una pequeña pieza ósea que permite probar que una especie extinta, hasta ahora solo registrada en otras regiones del mundo, habitó el sur de Argentina

¿Un tipo de edulcorante de los productos light podría afectar al hígado?
Investigadores de los Estados Unidos hicieron un estudio con peces zebra. Sugieren que el consumo elevado de sorbitol, que puede estar presente en alimentos bajos en azúcar, puede favorecer la acumulación de grasa en el hígado si faltan bacterias intestinales específicas

¿Comer solo envejece?: cuáles son los riesgos físicos y emocionales de la falta de compañía en la mesa
Mucho se habla de la importancia de los vínculos sociales para una vida saludable. Una reciente investigación demostró que las personas mayores que comen en soledad se alimentan peor, a la vez que se deteriora su salud mental



