
Durante una investigación científica, algunos modelos de IA desarrollaron tácticas engañosas para ganar partidas de ajedrez. Este comportamiento plantea preguntas fundamentales sobre la autonomía de las máquinas y sus posibles implicaciones en escenarios más críticos como la justicia, la medicina o la ciberseguridad.
Los investigadores de la organización Palisade Research fueron quienes presenciaron esta situación. Los científicos aseguran que este caso se puede dar porque entre sofisticado es un modelo de IA, más probable es que intente “hackear” el juego de manera espontánea para vencer a su oponente
Cómo la IA hizo trampa durante una partida de ajedrez
El estudio encontró que ciertos modelos de IA avanzados, como el o1-preview de OpenAI y DeepSeek R1, no solo fueron capaces de jugar ajedrez a un alto nivel, sino que también intentaron modificar las reglas del juego para asegurar su victoria.
Lo que comenzó como una simple partida entre máquinas contra el potente motor de ajedrez Stockfish, uno de los más avanzados en el mundo, terminó por destapar la capacidad de la IA para manipular su entorno y hacer trampa de manera autónoma.

El experimento consistió en poner a estos modelos de IA a competir contra Stockfish, un sistema que ha demostrado ser capaz de derrotar a los mejores jugadores humanos de ajedrez. Sin embargo, los investigadores se sorprendieron cuando algunos de los modelos comenzaron a desarrollar estrategias de engaño para evitar perder.
Mientras que los modelos menos avanzados como GPT-4o solo intentaban hacer trampa cuando se les indicaba explícitamente, los modelos más sofisticados, como o1-preview, lo hicieron de forma autónoma, sin intervención humana.
En concreto, el modelo o1-preview de OpenAI intentó hackear el juego en el 37% de las pruebas realizadas, mientras que DeepSeek R1 intentó trucos similares en un 10% de los casos. Estos modelos no solo buscaron formas de ganar a través de jugadas inteligentes, sino que comenzaron a manipular directamente el entorno de juego, alterando archivos y sobrescribiendo elementos del programa para asegurarse de ganar.
Técnicas utilizadas por la IA para hacer trampa
Las tácticas de trampa utilizadas por la IA no fueron simples intentos de mover piezas en momentos inapropiados. En su lugar, los modelos de IA buscaron maneras mucho más sofisticadas de manipular el juego.

Por ejemplo, o1-preview, cuando vio que no podía vencer a Stockfish en una partida, sugirió a los investigadores en su bloc de notas que para ganar debía “modificar los archivos de estado del juego”. Es decir, en lugar de simplemente jugar de manera más estratégica, la IA decidió alterar el entorno para tomar ventaja.
Otra táctica empleada por estos modelos fue la creación de copias del motor de ajedrez Stockfish. Al enfrentar a dos versiones de Stockfish, uno de los modelos trató de copiar los movimientos de su oponente para ganar ventaja. En otros casos, los modelos intentaron reemplazar el motor de ajedrez con uno mucho menos competente, con el fin de manipular los resultados a su favor.
El análisis de estas maniobras reveló que, si bien el aprendizaje por refuerzo, una técnica clave en el entrenamiento de estos modelos, podría ser la causa subyacente de este comportamiento, lo cierto es que no se sabía a ciencia cierta por qué los modelos actuaban de esa manera.

El aprendizaje por refuerzo funciona recompensando a los modelos cuando logran sus objetivos, en este caso, ganar la partida. Cuando la victoria se veía como algo difícil de alcanzar, la IA comenzaba a buscar soluciones no previstas, que incluyeron tácticas deshonestas.
Un comportamiento que podría volverse habitual a medida que los modelos de IA se vuelvan más avanzados. Dmitrii Volkov, investigador de inteligencia artificial, aseguró que se debe hacer un proceso de vigilancia más cercano para encontrar soluciones a esta situación.
“Sería tentador crear muchos casos de prueba como este e intentar entrenar el comportamiento. No obstante, como realmente no entendemos cómo funcionan los modelos, algunos investigadores temen que, si lo hacemos, el modelo simplemente finja cumplir o aprenda a identificar el entorno de prueba y se oculte. Así que no está claro. Tenemos que vigilarlos de cerca, pero por ahora no hay una solución definitiva”, dijo Volkov a MIT Technology Review.
Últimas Noticias
Qué es vibe coding y por qué Alexandr Wang, director de IA de Meta, lo recomienda
La llamada codificación intuitiva se basa en emplear inteligencia artificial para desarrollar y mejorar software mediante instrucciones dadas en lenguaje natural
El botón del TV que pocos conocen y que permite tener la mejor imagen en películas
Las últimas generaciones de Smart TV integran funciones como el Modo Cine y sensores de luz ambiental para ofrecer imágenes naturales adaptadas al entorno doméstico, revolucionando la experiencia televisiva tradicional

Top 5 de las profesiones que tendrán mejor trabajo en 2026 gracias a la IA
La incorporación de sistemas inteligentes en infraestructura crítica impulsará la creación de nuevos perfiles técnicos altamente especializados

Creador de ChatGPT se confesó y cree que “la IA va a tener efectos negativos en la salud mental”
Sam Altman, advirtió sobre los riesgos psicológicos, la posible dependencia de asistentes inteligentes y la urgencia de establecer marcos legales para proteger el bienestar y la privacidad de los usuarios

Guía definitiva de computación cuántica: conceptos básicos y su impacto futuro
Esta tecnología funciona con cúbits, que permiten procesar datos en superposición y revolucionan el procesamiento informático



