
Las mariposas, con más de 18.000 especies documentadas en todo el mundo, representan uno de los grupos más diversos dentro del reino animal. Sus patrones de coloración en las alas fascinan a científicos y naturalistas.
Estos patrones no solo cumplen funciones estéticas, sino que también desempeñan un papel clave en la supervivencia, el camuflaje, el apareamiento y la comunicación de las mariposas con otras especies.
Un equipo internacional de investigadores descubrió que la regulación del color negro en las alas de las mariposas no depende del gen cortex, como se creía, sino de un microARN, una molécula que se conoce como “mir-193″.
Este hallazgo desafía hipótesis previas y plantea nuevas preguntas sobre el control genético de la pigmentación en los lepidópteros. Los resultados fueron publicados en la revista Science.

El estudio fue realizado por científicos de Singapur, Japón y Estados Unidos, liderados por la profesora Antónia Monteiro y el doctor Shen Tian del Departamento de Ciencias Biológicas de la Universidad Nacional de Singapur, quien explicó a Infobae las implicancias del hallazgo, que van más allá de la entomología.
La identificación de mir-193 como regulador de la pigmentación sugiere que los microARNs desempeñan un papel clave en la evolución de los patrones de color en animales. Esto podría cambiar la manera en que se investiga cómo los genes influyen en las características físicas de los seres vivos. Además, el nuevo conocimiento podría considerarse en investigaciones en biomedicina y en la conservación de especies en peligro.
Un enigma sobre el color de las mariposas

Aunque se sabe desde hace tiempo qué factores ecológicos influyen en que las mariposas tengan o no melanina en sus alas, aún no se comprendía bien qué genes y procesos moleculares controlan estos cambios.
Durante décadas, los científicos asumieron que el gen cortex era el “interruptor” que controlaba la coloración melánica. Este supuesto se basaba en el hecho de que las variaciones en la pigmentación solían estar vinculadas a la región del ADN donde se encuentra el gen. Sin embargo, pruebas contradictorias comenzaron a generar dudas sobre su rol.
Esa incertidumbre llevó a los investigadores a explorar otras características genómicas dentro de la misma región del ADN.
Cómo los científicos investigaron la pigmentación

Para determinar qué elemento dentro de la región genómica era responsable del color negro en las alas, el equipo utilizó la herramienta de edición genética CRISPR-Cas9 para inactivar distintos genes en mariposas modelo.
Se trabajó con tres especies pertenecientes a líneas evolutivas profundamente divergentes: la mariposa marrón africana, la blanca de la India y el mormón común, una especie de Asia.
Los investigadores utilizaron CRISPR-Cas9 para inactivar el microARN mir-193 en las tres especies de mariposas. El objetivo era comprobar si este era el regulador del color negro en las alas y si su función se mantenía en distintas familias de mariposas.
Ese microARN es una molécula pequeña de ARN no codificante que regula la expresión de genes implicados en la producción de melanina. Se encuentra conservado en distintos grupos de animales, lo que indica que su función ha sido mantenida a lo largo de la evolución.
Los efectos de modificar mir-193 en distintas especies

En la mariposa marrón africana (Bicyclus anynana), la eliminación de la molécula redujo la cantidad de melanina en las alas, antenas, patas y abdomen. Eso provocó un cambio a un tono marrón claro en las alas y la pérdida del color negro en los patrones oculares.
En los mutantes con deleciones más grandes, los individuos no pudieron volar, lo que sugiere que mir-193 también influye en otras estructuras del cuerpo.
En la mariposa blanca de la India (Pieris canidia), el cambio llevó a que se eliminara toda la pigmentación negra y gris. Las alas quedaron completamente blancas, pero sin afectar las áreas amarillas. Esto demostró que mir-193 regula exclusivamente la melanina sin influir en otros pigmentos presentes en la especie.

En el mormón común (Papilio polytes), el uso de la edición genética también hizo desaparecer el color negro de las alas, pero en este caso se expresaron nuevos patrones en colores blanco, amarillo y rojo. Esto sugiere que, en esta especie, mir-193 no solo regula la melanina, sino que también podría influir en la expresión de otros pigmentos o permitir que otros genes de pigmentación tomen mayor protagonismo.
En todas las especies, según los investigadores, mir-193 resultó ser el principal regulador del color negro en las alas.
Sin embargo, hubo diferencias en los efectos observados: en Bicyclus anynana, la mutación afectó más allá de las alas y alteró la capacidad de vuelo; en Pieris canidia, el cambio se limitó a la conversión del negro en blanco sin alterar otros colores; y en Papilio polytes, la pérdida del negro permitió la expresión de otros colores, lo que indica una regulación más compleja de la pigmentación.
Más allá de las mariposas: implicancias del estudio

Para comprobar si este mecanismo era exclusivo de las mariposas, el equipo inactivó mir-193 en la mosca de la fruta (Drosophila). Encontraron que también regula la pigmentación en esta especie.
“Este resultado sugiere que mir-193 cumple una función conservada en la regulación de la melanización en insectos”, indicó la profesora Antónia Monteiro, líder del estudio.
El experimento mostró que mir-193, y no cortex, es el principal responsable de la regulación del color negro en las alas de estas mariposas. “Cuando interrumpimos mir-193 en tres especies de lepidópteros, las áreas negras desaparecieron por completo”, detalló Shen Tian.
El equipo también descubrió que mir-193 funciona suprimiendo genes responsables de la pigmentación, lo que significa que su activación o inactivación determina si las alas serán oscuras o claras.
“Este estudio demuestra que los ARN no codificantes, como los microARN, no deben ser ignorados en las investigaciones sobre la relación entre genotipo y fenotipo”, afirmó Monteiro.
Posibles aplicaciones en biomedicina y conservación

En diálogo con Infobae, el primer autor del estudio, Shen Tian, investigador del Departamento de Ciencias Biológicas de la Universidad Nacional de Singapur, respondió sobre la posibilidad de que el hallazgo tenga alguna aplicación en biomedicina.
El científico contestó: “Las funciones de los microARN pueden diferir a lo largo de grandes escalas evolutivas. Por lo tanto, aún no se sabe si mir-193 sigue teniendo un papel conservado en la regulación de la pigmentación en vertebrados. Sin embargo, en los seres humanos, ya se sabe que mir-193 actúa como un supresor tumoral, lo que lo convierte en un posible candidato prometedor para terapias basadas en pequeños ARN contra el cáncer”.

También el doctor Shen mencionó la posibilidad de aplicar el nuevo conocimiento en estrategias de conservación para especies en peligro que dependen de la coloración para camuflaje o comunicación.
“Este descubrimiento finalmente aclaró el mecanismo genético detallado de cómo se genera la diversidad de color en mariposas y polillas en respuesta a entornos cambiantes o heterogéneos”, afirmó.
Esta diversidad de color, determinada por variaciones en el ADN, es fundamental para la supervivencia. “Por lo tanto, los esfuerzos de conservación deberían centrarse en mantener una alta diversidad genética, especialmente en estas regiones genómicas consideradas puntos críticos de la evolución, para que las poblaciones naturales sean más resistentes a perturbaciones ambientales inesperadas”, enfatizó.