
* Este contenido fue producido por expertos del Instituto Weizmann de Ciencias, uno de los centros más importantes del mundo de investigación básica multidisciplinaria en el campo de las ciencias naturales y exactas, situado en la ciudad de Rejovot, Israel.
Imagine que va a hacerse una resonancia magnética de la rodilla. Esta exploración mide la densidad de las moléculas de agua presentes en la rodilla, con una resolución de aproximadamente un milímetro cúbico, lo que es ideal para determinar si, por ejemplo, un menisco de la rodilla está roto. Pero ¿qué pasa si necesita investigar los datos estructurales de una sola molécula que es de cinco nanómetros cúbicos, o aproximadamente diez billones de veces más pequeña que la mejor resolución que los escáneres de resonancia magnética actuales son capaces de producir?
Ese es el objetivo del Dr. Amit Finkler, del Departamento de Física Química y Biológica del Instituto de Ciencias Weizmann. En un estudio, Finkler, el estudiante de doctorado Dan Yudilevich y sus colaboradores de la Universidad de Stuttgart, Alemania, han logrado dar un paso de gigante en esa dirección, demostrando un nuevo método para obtener imágenes de electrones individuales. El método, ahora en sus etapas iniciales, podría algún día ser aplicable a la obtención de imágenes de varios tipos de moléculas, lo que podría revolucionar el desarrollo de productos farmacéuticos y la caracterización de materiales cuánticos.

Las técnicas actuales de resonancia magnética han sido fundamentales para diagnosticar una amplia gama de enfermedades durante décadas, pero si bien la tecnología ha sido innovadora para innumerables vidas, hay algunos problemas subyacentes que aún no se han resuelto.
Por ejemplo, la eficiencia de lectura de la resonancia magnética es muy baja, ya que requiere un tamaño de muestra de cientos de miles de millones de moléculas de agua, si no más, para funcionar. El efecto secundario de esa ineficiencia es que luego se promedia el resultado. Para la mayoría de los procedimientos de diagnóstico, el promedio es óptimo, pero cuando se promedian tantos componentes diferentes, se pierden algunos detalles, lo que posiblemente oculte procesos importantes que están sucediendo a una escala menor.
El que esto sea un problema o no depende de la pregunta que se esté haciendo: por ejemplo, hay mucha información que se puede detectar a partir de una fotografía de una multitud en un estadio de fútbol lleno, pero una foto probablemente no sería la mejor herramienta para utilizar si queremos saber más sobre el lunar en la mejilla de la persona sentada en el tercer asiento de la decimocuarta fila.
Si quisiéramos reunir más datos sobre el lunar, probablemente lo mejor sería acercarse. Finkler y sus colaboradores están sugiriendo básicamente una toma molecular de cerca. El uso de una herramienta de este tipo podría otorgar a los investigadores la capacidad de inspeccionar de cerca la estructura de moléculas importantes y tal vez abrir el camino hacia nuevos descubrimientos. Además, hay algunos casos en los que un pequeño “lienzo” sería esencial para el trabajo en sí, como en las etapas preliminares del desarrollo farmacéutico.

¿Cómo se puede conseguir un método de resonancia magnética más preciso que funcione con muestras pequeñas, incluso con moléculas individuales? Finkler, Yudilevich y los doctores Rainer Stöhr y Andrej Denisenko de Stuttgart han desarrollado un método que puede determinar la ubicación exacta de un electrón. Se basa en un campo magnético giratorio que se encuentra en las proximidades de un centro de nitrógeno vacante, un defecto del tamaño de un átomo en un diamante sintético especial, que se utiliza como sensor cuántico. Debido a su tamaño atómico, este sensor es especialmente sensible a los cambios cercanos; debido a su naturaleza cuántica, puede diferenciar si hay un solo electrón presente o más, lo que lo hace especialmente adecuado para medir la ubicación de un electrón individual con una precisión increíble.
“Este nuevo método”, dice Finkler, “podría aprovecharse para proporcionar un punto de vista complementario a los métodos existentes, en un esfuerzo por comprender mejor la santísima trinidad molecular de estructura, función y dinámica”. Para Finkler y sus colegas, esta investigación es un paso fundamental en el camino hacia la obtención de imágenes nanométricas precisas, y prevén un futuro en el que podamos utilizar esta técnica para obtener imágenes de una clase diversa de moléculas que, con suerte, estarán listas para su primer plano.
El equipo pudo determinar la ubicación de un electrón individual en tres dimensiones (distancia, ángulo polar y acimut) con una precisión de 0,09 nanómetros.
Quién es el líder de la investigación
El Dr. Amit Finkler llegó por primera vez al Instituto de Ciencias Weizmann como estudiante de posgrado, donde obtuvo su maestría y doctorado en el laboratorio del profesor Eli Zeldov en la Facultad de Física. Luego se trasladó a la Universidad de Stuttgart para realizar su investigación postdoctoral, antes de establecer su propio laboratorio en la Facultad de Química de Weizmann .
“Soy físico de pies a cabeza”, afirma Finkler, “pero trabajar en la Facultad de Química me abre todo tipo de posibilidades interesantes. Aunque nuestro laboratorio está formado principalmente por estudiantes de física, también tenemos químicos e ingenieros. Es una mezcla fascinante, y poder integrar diferentes técnicas y disciplinas es esencial para el tipo de ciencia que me interesa. Me encanta trastear con la óptica, disfruto con las quemaduras criogénicas y ahora también tengo la oportunidad de espolvorear todo tipo de moléculas químicamente modificadas sobre nuestros diamantes”. Finkler vive en Rehovot con su esposa, tres gatos y dos niños, de 18, 5, 3, 15 y 12 años, respectivamente.
El Dr. Amit Finkler es el titular de la Cátedra de Desarrollo Profesional Elaine Blond en Perpetuity.
Últimas Noticias
El primer rostro de la humanidad: hallan en Turquía una escultura de 12.000 años que revela cómo se veían nuestros ancestros
El hallazgo en el sitio arqueológico de Karahantepe, reveló una escultura tallada con rasgos humanos definidos

Una mujer se fracturó la columna y 14 años después volvió a caminar gracias a un implante cerebral
Una paciente británica logró mover sus piernas luego de más de una década, mediante una novedosa técnica que conecta su cerebro y su médula espinal con estimulación eléctrica

La meditación no es adecuada para todas las personas, advierte una investigación internacional
El estudio destaca que quienes presentan antecedentes de trastornos mentales tienen mayor riesgo de experimentar síntomas negativos, por lo que se recomienda un acompañamiento profesional y consentimiento informado antes de iniciar la práctica

COP30 en Brasil: cuándo empieza y las claves para entender qué se discute en la cumbre del clima
La ciudad de Belém en el Amazonas se convierte en el centro del debate climático mundial con la COP30. Allí, 197 países debatirán el futuro de la Tierra frente a la amenaza del calentamiento global

Innovación y robótica: así funciona el exoesqueleto ligero que promete revolucionar la movilidad en la Tierra y el espacio
Desarrollado por la Universidad de Bristol, este prototipo, confeccionado con técnicas artesanales y materiales de alta tecnología, tiene por objetivo asistir el movimiento tanto de astronautas bajo trajes espaciales como de personas en terapias de rehabilitación



