
En la búsqueda de crear materiales de construcción más resistentes y duraderos, un equipo de ingenieros de la Universidad de Princeton encontró inspiración en un modelo sorprendente: la capa externa del fémur humano, conocida como hueso cortical.
Este tejido óseo es reconocido por su capacidad de resistir fracturas y su tenacidad, y sirvió como guía para desarrollar un nuevo material a base de cemento, que es 5,6 veces más resistente a los daños que sus equivalentes convencionales.
Esta innovación no solo aumenta la resistencia del cemento, sino que también mejora su capacidad para evitar fallos catastróficos, lo que representa un avance significativo para la infraestructura civil. Los resultados del estudio fueron publicados en la revista Advanced Materials.

El material está diseñado para resistir el agrietamiento de una manera más eficaz que el cemento tradicional, el cual tiende a romperse sin previo aviso. Este nuevo cemento, creado por el equipo liderado por Reza Moini, profesor adjunto de ingeniería civil y ambiental, y Shashank Gupta, candidato a doctorado, utiliza una arquitectura interna basada en tubos elípticos y cilíndricos que imitan las osteonas del hueso humano.
La tenacidad de este cemento se incrementa considerablemente sin sacrificar la resistencia estructural, lo que lo hace ideal para aplicaciones en construcción e infraestructura civil. “Uno de los desafíos en la ingeniería de materiales de construcción frágiles es que fallan de manera abrupta y catastrófica”, aseguró Gupta al medio especializado Tech Xplore.
Cómo es el mecanismo para su resistencia
El mecanismo de interacción grieta-tubo es clave en la mejora de la resistencia del nuevo material desarrollado por los ingenieros de Princeton. Inspirado en la estructura del hueso humano, este material incorpora tubos huecos que interactúan con las grietas a medida que estas se propagan, creando un proceso de endurecimiento gradual.

Cuando una grieta comienza a extenderse, se encuentra con los tubos dentro de la pasta de cemento, lo que provoca una disipación de energía adicional en cada etapa de su avance. Este proceso no solo atrapa la grieta, sino que también retarda su expansión.
Este efecto se logra al optimizar la geometría, el tamaño, la forma y la orientación de los tubos, aseguraron tanto Europa Press como Tech Xplore. Aunque a primera vista se podría esperar que la incorporación de tubos huecos debilitaría la estructura, el equipo descubrió que, al ajustar estas características, se pueden mejorar una propiedad sin comprometer otra.
La interacción entre las grietas y los tubos genera un material mucho más tenaz, capaz de soportar un mayor nivel de estrés sin colapsar.

“Utilizamos principios teóricos de mecánica de fracturas y mecánica estadística para mejorar las propiedades fundamentales de los materiales ‘por diseño’”, explicó Moini según la agencia de noticias Europa Press. “Lo que hace que este mecanismo gradual sea único es que se controla la extensión de cada grieta, lo que evita un fallo repentino y catastrófico”, amplió Gupta.
Aplicaciones potenciales en infraestructura
Además de las mejoras, este cemento inspirado en el hueso humano tiene un enorme potencial para revolucionar el campo de la infraestructura civil. Debido a su capacidad, este nuevo material podría tener aplicaciones cruciales en la construcción de edificios, puentes y carreteras, donde la durabilidad y la seguridad estructural son fundamentales.
A diferencia de los métodos tradicionales, que refuerzan los materiales a base de cemento mediante la incorporación de fibras o plásticos, el enfoque del equipo de Princeton se basa en la optimización de la geometría interna del propio material, lo que elimina la necesidad de agregar otros componentes.

Además, el equipo está explorando la posibilidad de aplicar estos principios a otros materiales frágiles, ampliando su uso potencial en diferentes áreas de la construcción.
Según información de Europa Press, las nuevas técnicas de fabricación aditiva y el uso de robótica también juegan un papel importante en la precisión con la que se pueden construir estas arquitecturas internas, lo que podría facilitar la producción en masa de componentes de infraestructura civil a gran escala.
Últimas Noticias
Un hallazgo científico permite quitar hielo de aviones en minutos con electricidad estática y sin productos químicos
La tecnología, desarrollada por investigadores de Virginia Tech, utiliza un electrodo de alto voltaje para remover hasta el 75% del hielo de superficies aeronáuticas en pocos minutos. Cómo este avance logra reducir el consumo energético y el impacto ambiental de los métodos tradicionales

Investigan el potencial de un compuesto químico para tratar el Alzheimer y reducir el daño cerebral
Un equipo de científicos en Brasil desarrolló una molécula que, en pruebas con modelos animales, mostró resultados prometedores. Los investigadores buscan iniciar ensayos en humanos

Estados Unidos: descubren una planta en el Valle de la Muerte capaz de sobrevivir a más de 50 grados
Gracias a adaptaciones únicas que le permiten prosperar bajo condiciones extremas, la Tidestromia oblongifolia es protagonista de ambientes inhóspitos. Por qué advierten que su supervivencia podría mejorar la resistencia de cultivos ante el cambio climático

Vasectomías: por qué crecen las consultas y cuáles son las técnicas más utilizadas
Solo en la provincia de Buenos Aires, la cantidad de intervenciones aumentó en los últimos cuatro años, según expertos. Las causas y por qué se trata de un fenómeno que va más allá de esta región

Cómo el estudio de una pequeña ardilla terrestre impulsa el desarrollo de un fármaco para la insuficiencia cardíaca
El análisis de los mecanismos biológicos que protegen el corazón de este animal durante la hibernación permitió identificar nuevas vías terapéuticas y diseñar una molécula experimental con potencial para transformar el tratamiento de esta condición, según Science Focus



