
El genoma humano está compuesto por tres mil millones de pares de bases. Solo el 2% codifica proteínas. El 98% restante ha sido considerado con funciones menos importantes, pero esa mirada empezó a cambiar.
Lo llaman el “ADN basura”, y ahora investigadores de la Universidad de Tel Aviv, Israel, han aportado datos vitales sobre las razones por las cuales persiste ese ADN no codificante. Los hallazgos podrían ayudar a comprender mejor la rica variedad de tamaños de los genomas de los seres vivos.
El estudio, que fue financiado por la Fundación de Ciencia de Israel, se publicó en la revista Open Biology. La presencia en los cromosomas del “ADN basura” fue detectado por primera vez en la década de 1960.

En 1977, dos científicos llamados Richard Roberts y Phillip Sharp observaron, por separado, que una buena parte de este desorden de ADN no sólo estaba disperso entre los genes, sino que a menudo los interrumpía a mitad de secuencia, un descubrimiento que más tarde les valió el Premio Nobel.
Conocidos como intrones, parecían ser una carga para células complejas como las de los humanos, mientras que dejaban intactas a las más simples, como las de las bacterias. Además, añadían mucho trabajo al “proceso de transducción” del ADN en algo material.
Cada vez que se creaba una proteína, había que eliminar estas interrupciones de la plantilla genética. Eso obligaba a reconstruir las instrucciones de codificación antes de interpretarlas como una proteína. Una comparación cotidiana sería tener que eliminar miles de palabras sin sentido sólo para leer una frase.
Esta forma aparentemente derrochadora de funcionar es necesaria en toda la naturaleza, destacando como excepciones las afortunadas bacterias y otros procariotas.

El número de intrones también difiere enormemente de una especie a otra: los humanos tienen casi 140.000 intrones, las ratas unos 33.000, las moscas de la fruta casi 38.000, la levadura (Saccharomyces cerevisiae) apenas 286 y el hongo unicelular Encephalitozoon cuniculi sólo 15.
Una pregunta pendiente es por qué quedó el ADN basura en los organismos. “Curiosamente, supuestamente ha ocurrido lo contrario, ya que los eucariotas tienen genomas más grandes, proteínas más largas y regiones intergénicas mucho más extensas en comparación con los procariotas”, escribieron los científicos el estudio en Israel sobre los intrones.

Los investigadores propusieron que eliminar cualquier fragmento de ADN intrónico alrededor de las regiones codificantes probablemente perjudicaría la supervivencia del animal, ya que las secciones codificantes también podrían ser eliminadas al mismo tiempo.
“Las deleciones que se producen cerca de los bordes sobresalen ocasionalmente hacia la región conservada y, por tanto, están sujetas a una fuerte selección purificadora”, afirmaron los investigadores.
Esta “selección inducida por la frontera”, en la que una secuencia neutra se sitúa entre regiones codificantes, crearía por tanto un sesgo de inserción para secuencias cortas de ADN no codificante.

Esencialmente, el “ADN basura” actúa como un amortiguador mutacional: protege las regiones que contienen las secuencias más sensibles necesarias para codificar proteínas. Para demostrar esa dinámica en acción, los investigadores crearon un modelo matemático.
Anteriormente se había sugerido que “el sesgo de deleción conduce al encogimiento de los genomas a lo largo del tiempo evolutivo”, explicó el equipo. “El resultado contraintuitivo de que puedan surgir largas secuencias de evolución neutra incluso bajo un fuerte sesgo de deleción se debe al rechazo de las deleciones que invaden los bordes altamente conservados de las secuencias neutras”.
Aunque su modelo ofrece una explicación plausible de la variación en la longitud de los intrones dentro de una especie, no puede explicar por qué éstos difieren entre especies.

“Una explicación trivial es que los propios parámetros del modelo evolucionan”, expresaron los científicos. “Así, diferentes especies tienen diferentes proporciones de inserción-deleción y, posiblemente, diferente propensión a la aparición de regiones conservadas dentro de los intrones”.
Saber que existe un sesgo podría ayudar a explicar la variedad de intrones que vemos en la naturaleza y por qué algunos organismos parecen más “caóticos” genéticamente que otros. También se está investigando de dónde proceden estas interrupciones, con una larga historia de virus y genes obsoletos como fuentes.
Seguir leyendo:
Últimas Noticias
Científicos estudian “Olo”, un color que solo vieron cinco personas y podría explicar parte del daltonismo
El reciente hallazgo asombra a la comunidad científica y plantea interrogantes sobre los límites de la percepción visual. Cómo la tecnología puede ampliar la variedad de matices accesibles para quienes presentan alteraciones en la visión cromática

Los 10 acontecimientos espaciales más impactantes de 2025
Este año la ciencia fue testigo del destello luminoso jamás observado de un agujero negro supermasivo y del registro de más de un millón de galaxias gracias a un poderoso telescopio Euclid. Los avances que modificaron la comprensión del universo

Investigan las causas de una impactante expulsión de materia desde un agujero negro
El proceso que se asimiló a fenómenos magnéticos del Sol llegó al 20% de la velocidad de la luz

Los 10 descubrimientos científico-médicos de Mayo Clinic que cambiarán la salud del 2026
Infobae compiló las mejores investigaciones de este año y a sus líderes expertos de la prestigiosa institución de Estados Unidos. Hay avances en inteligencia artificial, terapias celulares y diagnóstico temprano que impactarán en la vida de millones de personas

Descubren el origen de misteriosas huellas en una luna helada de Júpiter
Simulaciones en laboratorio analizaron procesos terrestres que podrían generar este tipo de marcas



