Las tres áreas donde la unión de inteligencia artificial y computación cuántica marcará la diferencia en los próximos años

La integración de estas dos tecnologías permite optimizar procesos y reducir el consumo energético. Además, la creación de nuevos algoritmos cuánticos promete transformar la industria y la investigación científica

Guardar
Cada nuevo desarrollo trae grandes
Cada nuevo desarrollo trae grandes beneficios en diferentes sectores pero implica desafíos en materia de aplicabilidad. (Imagen Ilustrativa Infobae)

La convergencia entre la inteligencia artificial y la computación cuántica inició una nueva etapa en la innovación tecnológica. Ambas disciplinas, aún en fases muy distintas de adopción masiva, ya demuestran un potencial conjunto capaz de reconfigurar los procesos en investigación científica, desarrollo industrial y gestión económica a escala global.

Líderes de la industria tecnológica consideran que el impacto más profundo surgirá del trabajo complementario entre estas tecnologías, que empiezan a derribar barreras impuestas por los sistemas clásicos.

El vicepresidente de Quantum + AI en IBM, Ismael Faro, dijo que la relación entre estas dos tecnologías ya está generando cambios concretos y medibles. “La IA ya optimiza el código que entiende el computador cuántico”, aseguró.

El impacto de la IA
El impacto de la IA puede contribuir a que la gestión de recursos sea más eficiente y operativa. (Imagen Ilustrativa Infobae)

Este avance marca el inicio de un proceso que, en palabras del especialista, provocará una transformación estructural en sectores donde la eficiencia computacional y la reducción del consumo energético resultan decisivas.

Por qué la simulación química será uno de los mayores beneficiarios por esta unión

El desarrollo de nuevos materiales, medicamentos y productos industriales depende en gran medida de la simulación precisa de interacciones químicas a escala atómica. Hasta ahora, los ordenadores clásicos han encontrado limitaciones insalvables en procesamiento y memoria.

“La mayoría de la aplicabilidad que buscamos en la computación cuántica va a caer en sectores donde hemos visto que la mecánica cuántica puede aportarnos valor”, explicó Faro.

En el sector sanitario esta
En el sector sanitario esta unión puede traer innovaciones que mejoren la calidad de vida. (Imagen Ilustrativa Infobae)

Empresas farmacéuticas, laboratorios de materiales y compañías automotrices han comenzado proyectos piloto que aprovechan la capacidad de las computadoras cuánticas para mapear problemas químicos hacia modelos cuánticos.

Cómo estas dos tecnologías pueden optimizar la gestión de energía y las finanzas

El sector energético y el financiero se caracterizan por la necesidad constante de optimizar recursos, flujos y operaciones ante variables complejas. La unión de inteligencia artificial y computación cuántica se propone transformar esta realidad al permitir que grandes volúmenes de datos sean analizados y procesados con mayor eficiencia.

“Hemos hecho proyectos con empresas de energía, como EON, para optimizar el movimiento en la red eléctrica”, señaló Faro. Además, agregó que en el ámbito financiero, la capacidad de los modelos cuánticos permitirá abordar problemas tradicionales de optimización, cálculo de riesgo y gestión de portafolios.

La optimización de recursos energéticos
La optimización de recursos energéticos es una necesidad de la mayoría de países. (Imagen Ilustrativa Infobae)

Este proceso, actualmente restringido por los límites del hardware clásico, podrá avanzar al delegar las tareas más complejas a sistemas cuánticos mientras las partes simples se resuelven en computadoras tradicionales.

“El ahorro va a estar en el ahorro energético y en la calidad: todo lo que se tenía que consumir energéticamente en clusters clásicos podrá hacerse en la parte cuántica”, detalló Faro, refiriéndose al modelo híbrido de cooperación entre plataformas.

Qué oportunidades surgirán del diseño de algoritmos inspirados en la cuántica

Uno de los desarrollos más esperados es la creación de nuevos algoritmos que, apoyados en la física cuántica, redefinan los modelos de inteligencia artificial vigentes. El experto aclaró que, del mismo modo que la introducción de las GPU supuso el despegue de la IA moderna, la computación cuántica abrirá la puerta a diseños desconocidos hasta el momento.

“Cuando aparezcan nuevos algoritmos cuánticos, cambiarán cómo es la IA actual. No solo serán algoritmos más rápidos, sino que aprovecharán ventajas propias del hardware cuántico”, confirmó.

Agentes inteligentes permitirán que más
Agentes inteligentes permitirán que más profesionales puedan interactuar con la tecnología cuántica. (Imagen Ilustrativa Infobae)

La llegada de estos algoritmos tendrá repercusiones en el consumo energético, el tamaño de los modelos y la capacidad de procesamiento. Además, las futuras arquitecturas permitirán una integración más sencilla de agentes inteligentes, como interfaces que faciliten el uso de sistemas complejos para usuarios no expertos.

Esta transición apunta a una democratización del acceso, donde expertos en química, finanzas o cualquier sector podrán utilizar la potencia cuántica a través de herramientas accesibles.

Qué retos plantea la corrección de errores en la computación cuántica

El principal obstáculo técnico para la expansión de la computación cuántica es la gestión de errores generados en los procesos físicos. Los sistemas cuánticos, a diferencia de los digitales clásicos, operan bajo condiciones donde ciertas situaciones puede afectar el resultado de los cálculos.

“Todos estos chips cuánticos son muy susceptibles al error por temas físicos”, comentó Faro. El desarrollo de algoritmos de corrección de errores ha recibido un fuerte impulso gracias al apoyo de la inteligencia artificial, que permite optimizar la detección y respuesta ante fallos.